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A perturbation method. is proposed to determine tne bifurcation diagram fo: 
instabilities in thin liquid-crystalline layers which are subject to an externa! 
magnetic or electric field. Different types of continuous and discontinuous field - 
induce6 director reorientations can be classified by using elementary bifurcatim 
theory. When two differently oriented director positions are stable, domains may 
appear. For weakly distorted samples the structure and velocity of walls between 
stable differently oriented domains is described by a soiitary wavy solution of the 
non-hear director equation. The results of the perturbation. method are applied 
to nematic and smectic C films. 

1. Introduction 
The investigation of field-induced instabilities in liquid-crystalline layers provide:; 

a simple means to determine the material parameters [I]. Furthermore, various 
applications of director reorientations are possible. The switching characteristi, -s can 
be varied appropriately by optimizing the geometrical conditions and the values OP the 
elastic constants. In such a way continuous and discontinuous transitions result. 
When the initial director position becomes unstable after applying the field, the 
director switches simultaneously towards a stable state over the entire sample. How- 
ever, if the initial position is metastable, transitions proceed by domain wall motion. 
The aim of this paper is the investigation of domain walls which appear in weakly 
distorted layers close to bifurcation points. This problem implies the determination 
of the bifurcation diagrams for field induced transitions. For simplicity we restrict OUT 
attention to plane walls, but it should be mentioned that an extension of the 
perturbation method to weakly curved walls is also possible. 

Figure 1 shows a domain wall in a nematic liquid crystal subjected to a magnetic 
field. If the field strength exceeds a definite value, two stable director configurations 
are possible. For a somewhat inclined direction of the magnetic field, walls between 
differently oriented domains move through the sample in such a way, that absolutely 
stable domains grow at the cost of metastable domains. When the magnetic field is 
perpendicular to the plates, both domain types are equally stable and the wall velcoity 
vanishes. For this geometry Brochard [2] determined the wall structure theoretically. 
He also estimated the velocity of the moving walls in tilted magnetic fields by 
comparing the entropy production with the released field energy. To describe travell- 
ing walls Wang [3] introduced a simplified mathematical approach using certain 
unproved assumptions. Lin and Shu [4] commented on some results in Wang’s paper 
and compared them with the experimental results obtained by Leger [5 ] .  

As a second example we consider a smectic C phase in an external electric field (see 
figure 2). The director in a smectic C liquid crystal is confined on the surface of a cone 
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418 P. Schiller et al. 

Y‘ 

Figure 1. Domain wall in a planar nematic layer subject to a tilted magnetic field. Here B is 
the magnetic flux density, d3) is the tilt angle of B, w’ is the wall velocity, u is the director 
rotation angle and x’, y’ z’ are Cartesian coordinates. 

Y - Y ’  

/ v +,’ / I  

Figure 2. Domain wall in a Sc film. E is the electric field, IC is the tilt of the smectic layers with 
respect to the sample surfaces, a is the angle between the normal of the smectic layers and 
the direction of the electric field and w is the velocity of the domain wall. x’, y’, z’ and 
x, y ,  z ,  are Cartesian coordinates. 

with an aperture 20. After applying the field domains may appear, which differ in the 
rotation direction. In contrast to the previous example it is not necessary to tilt the 
field to obtain moving walls. Already if the smectic layers are not exactly perpen- 
dicular to the boundary plates, domains with differently aligned directors are no 
longer equally stable and wall motion is generated. Some theoretical results in [6] are 
related to the case of large fields which significantly exceed the Freedericks threshold. 
In 55.2. we consider solitary waves in Sc films at fields close to the Freedericks 
threshold. It should be noted, that solitary waves generated mechanically can be 
regarded as fast moving walls. In this topic many interesting results have been found 
for nematic liquid crystals [7,8]. An insight into the mathematical treatment is given 
in [9,10]. 

2. Bifurcating solutions of the director equation 
Consider a liquid-crystalline layer between plates at X = 0 and X = d. Excluding 

pattern formation we assume that a distorted state of the sample is described by a 
scalar function u ( X ) ,  which is usually the rotation angle of the director, u is equal to 
zero for the homogeneously aligned initial state at the vanishing field strength. For 
convenience dimensionless coordinates 

7LY 
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x = -  
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Domain walls in thin liquid crystal films 

are introduced, so that the thin layer is located within the interval 

O < x < n .  

The free energy of the liquid-crystalline layer is the functional 

FbI = - d X k ( 4 4  + f (41,  : Jon 
where 

au 
ax* u, = - 

As the director is fixed at the boundaries, the conditions 

419 

u(0) = 0 and ~ ( n )  = 0 (2) 
have to be satisfied. 

the equation of motion 
When backflow effects are neglected, the dynamics of the director is described by 

where z is proportional to the time. For an equilibrium state the torque balance 
equation (3) reduces to the Euler-Lagrange equation 

u,,g(u) + +g’(u)u:. - +f’ (u )  = 0. (4) 
The analytic functions f and g are expanded in series 

( 5 )  1 g(u) = 1 + g,u + g,u2 + . . . , 
f ( u )  = f ou  + h u 2  + f 2 u 3  +hu4 + . . . . 

We note that the special choice g ,  = 1 involves a suitable definition of the dimen- 
sionless time in equation (3). Insertion of the series (5) in equation (4) leads to 

- 3fo + ( u x x  -h4  + (g2uuA-x + tg2u: - t f 2 u 2 )  

+ (g3u2u,, + g,uu: - 2 ~ ~ 3 )  + . . . = 0. (6) 
In this case the homogeneous director alignment, u = 0, is compatible with equation 
(6), only when 

f o  = 0. (7) 
Now we investigate, how non-trivial solutions of equation (6) emerge from the 

initial state u = 0 at a bifurcation point. Such a point is found by solving (6) in the 
linear approximation, 

u, - f i u  = 0. ’ (8) 
This equation and the boundary conditions in equation (2) define a linear eigenvalue 
problem. The eigenvalue with the smallest value Ifi 1 is physical relevant. This eigen- 
value isfi = - 1 with the corresponding eigenfunction 

u = asinx. (9) 
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420 P. Schiller et al. 

The relation 

fl = -(I  + P )  
ntroduces a bifurcation parameter p, which is assumed to be small in our calculations 
ipl 6 1). Furthermore, we define a norm for functions u(x) by 

E = max lu(x)l 
0 4 x < n  

Close to the bifurcation point p = 0 the norm of branching solutions of equation (6) 
is also a small quantity ( E  6 1). E characterizes the order of magnitude for any 
quantities defined in the framework of the perturbation treatment. Equation (6)  is 
solved stepwise using the expansions 

The first differential equation has the solution 

u(') = asinx (a = a(')), 

where a can be chosen arbitrarily. This solution is inserted into the second equation 
of the hierarchy (13). Because the eigenvalue problem 

@; + u(2' = 

with the boundary conditions of equation (2) has the non-trivial solution 

u(2) = d2) sin x 

for 1 = 0, the condition of solubility 

jo* dxL(2)sin x = 0 

has to be satisfied (Fredholm's theorem). 
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Domain walls in thin liquid crystal films 42 11 

The integration yields 

This equation has the solutions 

and 
a 

which describe the branches of a 

= o  

transcritical bifurcation (see figure 3) .  Stable states 
(the solid lines) correspond to a minimum of the free energy (1) and unstable states 
(dashed lines) to a maximum. 

Frequently, symmetry requirements are accompanied with the condition 

g2 + 2f2 = 0. (18) 

p(’) = 0 (19) 

In these cases 

results and the distortion amplitude is determined by the last equation (13). In 
analogy to equation (15) Fredholm’s theorem leads to 

or explicitly 

-p(’)a + ($A + $g3)a3 = 0. (21) 
This equation has two solutions, which describe either a supercritical or a subcritical 
bifurcation, depending on the sign of 6f3 + g3 (see figure 3). 

‘ ----- ”A 

I J  ------ 34a /’ 
Figure 3. Bifurcation diagrams (p is the control parameter and a is the distortion amplitude). 

Solid lines correspond to stable states and dashed lines to unstable states. ( 1 )  trans- 
critical bifurcation (2g2 + 4fi # 0) (2) supercritical bifurcation (2g2 + 4f2 = 0, 
6f3 + g, > 0) ( 3 )  subcritical bifurcation (2g2 + 4h = 0, 6f3 + g ,  < 0). 
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422 P. Schiller et al. 

3. Bistability 
Rapid convergence of the perturbation expansion requires that distortions are 

small. This condition necessarily restricts a general investigation of bistable layers 
with the aid of perturbation methods. In this paper we shall not consider the sub- 
critical bifurcation further, but for the transcritical case the suppositions 

guarantee that all solutions of the director equation have small distortion amplitudes. 
Clearly, these relations also involve the supercritical bifurcation withf, = g, = 0. 
Furthermore, it is possible to include imperfect bifurcations [l 11 by assuming that 
fo # 0. For example, an imperfect bifurcation results, when the director is somewhat 
tilted at the boundaries [ 121. 

Iffo # 0, we make the assumption 

fo = f ( 3 ) ,  

where (23) 
f ( 3 )  N &3. 

Taking into account the relations (22) and (23), the set of equations (12) is replaced 
by 

(24) 

(25) 

(26) 

I u:; + u(l) = 0, 
ut2' + u(2' = - (1) (1) 

(3) + u(3' = - (1) (2) - P12)u(I) + 3 f '3 '  

- g (1) [uxxu (1) (1) + +(uy)'] + $f(l)(u( '))2 

- g3Ku 1 u x x  + u (ux ) 1 

xx P u ?  

UXX P U  

(1) 2 (1) (1) (1) 2 

+ 2f3 ( ~ 4 ' ~ ) ) ~  . 
The solution of the first equations is 

u( l )  = a sin x. 

Inserting this solution in the right hand side of the equation for d2) and applying 
Fredholm's theorem (1 5)  we obtain 

p(I) = 0. 

a3 + p a 2  + p + p(31 = 0 
Finally, the solubility condition for the last equation of the set (24) yields 

a (27) 
where 

Equation (27) has either one or three real solutions. In the latter case twe: solutions 
correspond to stable states and the third to an unstable stationary neare. The 
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Domain walls in thin liquid crystal films 423 

Figure 4. Bifurcation diagrams corresponding to equation (27). Solid lines are assigned to 
stable states and dashed lines to unstable states. The coefficients in equation (27) are 
chosen differently (p  = p(2) is a control parameter and a is the distortion amplitude): 

27(fl(3))2 < ( f l (1))3f l (3) ;  (4) fl  > 0, pc3) # 0, 27(fl(3’)2 > (p(1))3fl(3). 
(1)  p > 0, p‘” = 8‘3) = 0; (2) p > 0, p(’) # 0, p(3) = 0; (3) p > 0, p‘3’ # 0, 

bifurcation diagrams are obtained by plotting a versus p@);  for p > 0 such diagrams 
are shown in figure 4. When 8(3) # 0, then there is not a bifurcation point and two 
separate solution branches appear (imperfect bifurcation). 

4. Domain walls 
Transitions from a metastable to an absolutely stable state proceed by travelling 

domain walls. Let us assume, that the z axis of a Cartesian system is parallel to the 
plates and perpendicular to the normal of a plane wall (see figure 1). Generalizing the 
free energy (1) to the two dimensional case we obtain 

F[u] = j d z  lo” dx [g(u)ut + h(u)ul + m(u)u,u, + f(u)l  (29) 2 

and the corresponding boundary conditions for u are 

(30) 1. U(X = 0, Z, T )  = U(X = 71, Z, 7) = 0, 

lim u,(x, z ,  T )  = lim u,(x, z ,  T) = 0. 

The boundary conditions imply that far away from the domain wall the director 
alignment does not depend on the coordinate z. Now the equation of motion (3) takes 
the form 

2-02 :--m 

u,,g(u) + +g’(u)u: + u,,h(u) + +h’(u)uT 

+ m(u)u, + $m’(u)u,u, - + f ’ ( u )  = u, .  

The non-linear functionsf, g ,  h, and m are expanded in the series 

g(u) = 1 + g(’)u + g3u2 + . . . , 
f (u )  = f‘3’u - (1 + p)u2 + f % 3  + h u 4  + . . . , 
h(u) = h, + h2u + h3u2 + . . . , 

m(u) = m(l) + m2u + m3u2 + . . . , 
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4% P. Schiller el ai. 

Besides tna, assumptions (22) and (23) for obtaining weakly distorted director con- 
figurations the additional requirement Im,I = Im(')l 6 1 should be satisfied. This 
condition is strictly valid for nematic layers, because in these cases m, = 0. We seek 
solitary wave solutions of equation (3 1) to describe walls, which travel with a constant 
velocity o. The Galilei transformation 

( = z - v r  633) 

reduces the number of variables. Thus we have 

u = u(x, 51, u, = ut and u, = we. 

The perturbation calculation starts with the expansions 

= u ( l ;  f dZ) f d3) + . . . , 
+ . ' . ,  

p = ((d) f Id2) +- . . .>, 3 
The scaling of the coordinate 5 in the Past expansion takes into consideration that the 
domain wall width diverges when the bifurcation point (b,  = 0 irr the case of a 
supercritical bifurcation) is approached [5 ] .  The expansion parameters a>(') are detes- 
mined by non-linear boundary value problem, which result from the perturbation 
theory. To the lowest order of magnitude the derivatives of u are found to be 

Inserting expansions (34) and (35) into equation (31) and arranging all terms accord- 
ing to their order of magnitude, the system of equations 

U ( 3 )  + U ( 3 )  = R(3) 

u g  + U ( I )  = 0 

xx 

(361 
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Domain walls in thin liquid crystal films 425 

with a(@> = a(’)(@). The solubility condition for the second equation of the system 
(36) leads to 

so that for any non-trivial solution (a # 0) 

p(I) = 0. (39) 

a(”((e) sin x. (40) 

Because R(*) = 0, the second equation of the system (36) is solved by 
p = 

Finally, the condition of solubility 
r n  

1 R(3)sinx dx = 0 (41) 
JO 

is applied to obtain the function ate). Taking into account the results (37), (39) and 
(40), a non h e a r  differential equation is derived from equation (41) 

h , ( ~ ( ~ ) ) * a , ,  - v(’’o(l)a, = j (a3  + /1(l)a2 + p(2)a + p ( 3 ) ) .  (42) 

(43) 

Alas[ - v ( ’ ) q  = ,8(a - aA)(a - aE)(a - a& (44) 

The polynomial on the right hand side of equation (42) has three real roots 

a, Q aE Q ac, 
when the director alignment is bistable. Then we have 

where the coordinate @ is replaced by 5 according to the transformation (35). 
Equation (44) with boundary conditions 

has the solution [I31 

where 

and 

(47) 

(48) 

Thus the solitary wave solution is determined by 

sinx + 0 ( c 2 ) ,  (49) 
aA + 1 + expw(z - vz> 

- u(x, 2 - VZ) = 

where we have omitted the superscripts of v(l) and w(l). This result describes a 
travelling domain wall, which separates two domains with distortion amplitudes a, 
and ac. 
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426 P. Schiller et al. 

5. Examples of bistable layers 
5.1. Planar nematic layer in a magnetic field 

We restrict our attention to the special geometry illustrated in figure 1. The tilt of 
the magnetic field is assumed to be small (ld3)1 < l), so that two weakly distorted 
director configurations are stable at moderate magnetic fields. Applying the con- 
tinuum theory of nematic liquid crystals [l], the free energy is expressed as the 
functional 

where 

fA = $(Kl I cos2 u + K33 sin2 u) (&J + &(Kll sin2u + K33cosz u) 

+ (K33 - K,,)sinucosu (&)($) 
f B = - +AXB2sin2(u + d3)), 

K, ,  , K22 and are the elastic constants of the Frank-Oseen-theory, AX denotes the 
anisotropy of the magnetic susceptibility, B is the magnetic flux density and the x’y’ 
coordinate system is defined in figure 1. The director angle u obeys the equation of 
motion 

where t is the time, and 1 is the rotational viscosity. With the transformations 

71 71 n2K11t x = - X I ,  z = - z ’  and z = - 
d d d2A ’ (53) 

dimensionless coordinates and a dimensionless time are introduced, and the integrand 
of the integral (50) is expanded in powers of u. The result is the functional 

where 

f 
K, 1 

I: = - + 0 ( c 6 ) ,  

and 

, r = -  K33 , Bo = id(?). k =  K33 - Kll 
Kl I Kl1 
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Domain walls in thin liquid crystal films 427 

Comparing the functionals (29) and (54), we identify the coefficients in the expansions 
(32) as 

g(l) = 0 9 g 3 = k ,  

f ( ' )  = 0, fi = - 1 - B2 - Bi 
Bi ' 

B2 2 ~ ~ 3 )  f3 = --i, f ( 3 )  = - -, 
3 4  B,z 

h,  = r and m") = 0. 

Combining the relations (56)  and (28) yields 

p = - + -  B2 k p ( L 0  
2Bi 4' 

4B2 d3) and fl(3) = - - B2 - Bi p(2) = 
B,2 B .nB,2 B 

and equation (27) is determined explicitly by 

B2 - B; 4B2 
a3 - ( B,'P ) a - (m) '(') = 

According to this equation the bifurcation is either supercritical for d3) = 0 or 
imperfect, when the magnetic field is somewhat tilted to the plate normal. The latter 
case is illustrated in the bifurcation diagram given in figure 5. The arrow indicates the 
transition from a metastable to an absolutely stable director configuration by wall 
motion. With the roots aA, a, and a, of equation (58) the structure and velocity of a 
domain wall is determined by equations (49), (47) and (48). 

Figure 5.  Bifurcation diagram of a nematic layer in an inclined magnetic field. B is the 
magnetic flux density and a is the distortion amplitude. The arrow indicates the transition 
from the metastable to the absolutely stable director configuration. 

For a qualitative discussion let us assume that KI I  = K33 ( k  = 0). Then equation 
(58) reduces to 
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428 P. Schiller et al. 

and the limit of bistability B, (see figure 5) is found to be 

It can be checked easily, that the domain wall velocity has a maximum value for 
B = B, . Using formula (48) for v and taking into account the transformations (53), 
this velocity can be expressed in conventional units as 

5.2. Planar oriented smectic C$lm in an electric$eld 
The director position in smectic C phases is uniquely determined by an azimuthal 

angle Q, as the director is confined to the surface of a cone (see figure 6). Let us 
consider a domain wall in a planar oriented sample; this geometry is presented in 
figure 2. In [6] the free energy 

- A&E* (cos a cos % + sin e sin a cos 

is derived, where B,, and B ,  are elastic constants, a, is the angle between the field 
direction and the layer normal, A& is the dielectric anisotropy (A& > 0) and E is the 
electric field strength. By simple geometrical considerations the relations 

and 

COSQ, = - 
tan % 

are obtained, where K is the layer tilt angle (see figure 2) and 0, corresponds to the 
director position of the undistorted sample. Any distortions in the sample are 
determined by 

u = @ - Q 0  (64) 

-. 

x ‘  

Figure 6. Director rotation in the Sc phase. n is the director, Q is the azimuthal angle of the 
director, and 0 is the tilt angle of the director with respect to the normal of the smectic 
layer plane. x’, y‘ and z’ are Cartesian coordinates. 
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Domain walls: in thin liquid crystalJilms 

and the evolution of u is governed by 

in complete analogy to equation (52). The transformations 

n2 (BII cos2 K + B, sin2 K )  

d2il 
r =  

n. x = - (X’COSK - z’sin K ) ,  
d 

429 

(65) 

define a dimensionless time r and a coordinate system, which is fixed at the bounding 
plates of the sample (see figure 2). Then the free energy (62) is rewritten as 

F = 2 j d ~  Jon d x  [u: + h , ~ :  + rn,u,u, 

(cos(@o + u) - cos@o)2 , (67) 1 AsE2 sin2 Qcos2 Kd2 _ _  
Be! ?I2 

where 

Be, = B I I c o s 2 ~  + B,sin2~, 

1 
h,  = - (Bll sin2ic + B,cos2~) 

Be, 

and 

2 
&I 

m, = - (Bll - B,)cos~sin IC. 

Substituting f and t by F and r ,  respectively the equation of motion (64) is converted 
to the dimensionless form (31). The integrand of F is expanded 

with 

E 2  - Ei  f i  = - 1 -  
tan 0 ’ 

E2 f3 = 3E,2’ 
71: 

Eo = 
d sin 0 cos K sin 
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430 P. Schiller et al. 

The conditions (22) for obtaining weakly distorted director configurations turn out to 
be satisfied, when the layer tilt JC is small compared to 6 

Ic Ic(l) 4 8, (71) 

f2 = f(') and m, = m"). (72) 

so that 

By comparing the functionals (69) and (29) the coefficients (28) are identified and, 
inserted in equation (27), give 

a = O  
8 E i  tan IC a2 + E2 - Eo' 

E2 a3 + nE2 tan 8 

For E > El with 

(73) 

the system is bistable 
Figure 7 shows the bifurcation diagram, which corresponds to equation (73). The 

arrows indicate possible transitions from a metastable to an absolutely stable state by 
travelling walls. Let us determine the wall velocity TJ from equation (48). When the 
solutions of equation (73) are arranged according to their magnitude (aA < a, < a,), 
two cases have to be distinguished. 

If E 2 E,,, we have 

and 

where 

aA = r - R ,  a, = 0 

a, = r + R ,  
(75) 

and 

4 tan IC 
ntan8 '  

r = -  

Expressing the dimensionless velocity (48) in conventional units (V = nBeId-'A-'v) ,  
we obtain 

nrB,  E 
ildJh, Eo * 

v =  

Similarly, for El < E < Eo we find 

a A  = 0, a, = R - r and a, = R + r ,  (77) 
so that 

n(3R - r)B,,E 
2ildJh,E0 * 

v =  
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Domaix walls in thin liquid crystal films 43 1 

Obviously, for E = E2 with 

E, = Eo [I - $ (ST] + O ( E ~ )  (79) 

the direction of the velocity is reversed. 
Finally, let us remark, that perturbation techniques are also suitable to determine 

the bifurcation diagram of more complicated systems. In [12] the Freedericksz tran- 
sition in twisted layers of nematic and cholesteric liquid crystals has been considered. 
The results of the perturbation expansion for small and moderate distortion angles are 
well confirmed by numerical calculations. 

6.  Discussion 
The perturbation method used in this paper provides a general procedure for 

describing field-induced domain walls in weakly distorted liquid crystal layers. In 
principle, approximations of higher order in terms of the parameter E can also be 
obtained in a systematic manner. This problem has been solved for determining 
bifurcation diagrams of twisted nematic liquid crystals [ 121. However, higher order 
corrections of the domain wall solution (49) are rather complicated. The results of this 
paper concerning domain wall motion in nematics can be compared with other 
approaches in the literature. 

6.1. Nematic layer 
Recently, Wang [3] has derived a solitary wave equation by using an ansatz, which 

is written as 

4x9 z, t )  = ~,(x)4(x,  z, 0, (80) 

in our notation. Here O,(x) is a rapidly varying function of x and 8, is slowly varying 
with x ( t  is the time). Yu-zhang and Zhong-can [I41 criticized the rather intuitive 
mathematical procedure in [3]. In another comment Lin and Shu [4] pointed out, that 
a condition for the occurrence of walls resulting from Wang’s approach contradicts 
the experimental data obtained by Leger [5]. Nevertheless, Wang has obtained a 
similar solitary wave equation for the magnitude of el as derived with the per- 
turbation method in this paper. Therefore let us discuss the experimental results of 
Leger [5] in comparison to the conclusions drawn from the solitary wave solution (49) 
which is applied to a nematic layer in an inclined magnetic field. 

Leger found that the domain wall velocity, v, decreases with increasing magnetic 
flux density, B. This behaviour is in accord with equation (48) for v, when the roots 
aA,  aB and a, of equation (59) are inserted. But our procedure for fitting experimental 
data would be different from that of Leger, who assumed the dependence 

1 
B - Bo’ 

0.V- 

(B, is the Freedericksz threshold for d3) = 0) which was suggested by Brochard [2]. 
However, the solitary wave solution (49) is only applicable in the bistable region, 
namely if B > B, (see figure 5). Leger has also obtained wall velocities outside the 
bistable region (for B < B,)  as Lin and Shu [4] emphasized. Clearly, outside the 
bistable region the solutions of the solitary wave equation (42) are more complicated 
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than solution (49). In this case one of the two domains which are separated by the wail 
must be unstable and two processes should occur simultaneously. Firstly, the domain 
wall moves and secondly, the director in the unstable domain reorientates toward the 
stable equilibrium state. The second process proceeds very slowly if B N Bo and 
d3) 4 1, so that the wall motion can be observed for a relatively long time. A solution 
of equation (42) describing both processes has not yet been found. But the observation 
ofwalls [ S ]  at fields somewhat below B, is explained by the slow decay rate of unstable 
domains. 

Figure 7. Bifurcation diagram of a S, sample, which is subject to an electric field ( E  i s  the 
electric field and a is the distortion amplitude). The arrows indicate transitions from a 
metastable to an absolutely stable state by travelling domain walls. 

6.2. Smectic Cfilm 
Recently, experimental results concerning the domain wall motion in non-chiral 

smectic G films has been reported 161. The wall motion observed above the 
Freedericksz threshold was interpreted as a transition of a metastable distorted state 
to the absolutely stable director configuration, which corresponds to transition 3 in 
figure 7 of the present paper. The wall velocity 

2 (82) 
A(Be, A&) sin IC cos BE 

I v =  

obtained in [6] refers to a large field strength E % Eo and therefore differs from 
equation (76), which is valid in the neighbourhood of Eo. 

It should be mentioned, that a transcritical bifurcation is also possible in nematic 
cells with a boundary pretilt angle, when an inclined magnetic field is oriented exactly 
perpendicular to the director [Is]. In this case analogous formulas for domain walls 
as obtained in $5.2 result. 
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